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SYMBOLS

s distance along meridian, measured from apex

0 circumferential coordinate angle

sy, S2 distance from apex to the edge of minor and major base,
respectively

a,b radius of the major and minor base, respectively

x = log (sZ/s), meridional coordinate
L = log (sz/sl) = log (a/b)

«7 = d/dx, differential operator

a semivertex angle

h thickness of shell

€ = h2/12a2, thickness parameter

P mass density
v Poisson's ratio
E Young's modulus

C = Eh/(1 - vz), extensional modulus
D= Eh3/12(1 —vZ), flexural modulus

K shear constant

kg = k(1 - v)/2

Ny, Ng, Ngg stress resultants

Ms’ Mg, Ms@ stress couple resultants

Qg Qg Transverse shearing stress resultants



SYMBOLS (Cont'd)

u, vV, W displacements of middle surface

Bs: By angular displacements of normal to middle surface
n circumiferential wave number

t time

w circular frequency in rad/sec

2 = waq/ p(l - vZ)/Er, dimensionless frequency parameter
F,K,H,J operator matrices

Hij, Ji, etc. operators, elements at ith row and jth column of operator
matrices H, J, etc.
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FREE VIBRATIONS OF CONICAL SHELLS

By William C. L. Hu

Southwest Research Institute

SUMMARY

A method is presented for calculating the natural frequencies and asso-
ciated modes of axisymmetric and nonsymmetric vibrations of truncated con-
ical shells. The effects of transverse shear deformation and rotatory inertia
are included in the formulation. The determination of the natural frequencies
and mode functions is reduced to the calculation of eigenvalues and associated
eigenvectors of a coefficient matrix, whose size depends on the number of
terms retained in the Fourier expansions of the mode functions. Numerical
examples are given to illustrate the calculation procedure. Axisymmetric vi-
brations of free-free conical shells are investigated based on a five-term
truncation of the Fourier series of the mode functions, with special emphasis
on the variation of the frequency spectrum with respect to the semivertex
angle and the completeness parameter of the conical shell.

INTRODUCTION

In recent years, a great amount of effort has been exerted by many in-
vestigators to determine the natural frequencies and mode shapes of truncated
conical shells with various boundary conditions. A review of the literature
(Ref. 1) indicated that, due to the difficulty of analytic treatment of the prob-
lem, most investigators had to employ energy methods with simple assumed
mode functions(Refs. 2-8), while some others resorted to numerical integra-
tion (Refs. 9-12) whichisless efficient in solving eigenvalue problems than in
solving initial value problems. Among prior investigations, Federhofer
(Ref. 2) and Saunders, Wisniewski and Paslay (Ref. 6) used truncated power
series or polynomials as assumed mode functions, while Grigolyuk (Ref. 3)
and Herrmann and Mirsky (Ref. 4) used trigonometric functions as assumed
mode shapes, then calculated the frequencies by a Rayleigh-Ritz procedure.
Shulman (Ref. 5) studied several approximate approaches and made an exten-
sive comparison of the numerical results, which revealed a wide discrepancy
between different methods. Seide (Ref. 7) used a Donnell type energy expres-
sion in a Rayleigh-Ritz procedure but neglected the effects of longitudinal



inertia in his kinetic energy expression. He expanded the mode functions into
infinite series and calculated the natural frequencies by solving the truncated
determinantal equation. He remarked that there appear to be no generaliza-
tions that can be made for simplifying the calculation of the entire frequency
spectrum. In a recent paper, Garnet and Kempner (Ref. 8) studied the axi-~
symmetric vibrations of conical shells by a Rayleigh-Ritz procedure which
incorporated the effects of transverse shear deformation and rotatory inertia.
As in many other papers, their numerical analysis has to be based on a one-
or two-term truncation of the series expansion of the mode functions, which is,
in general, too crude to be consistent with their overaccurate energy expres-

sions and strain expressions.

In contrast to the Rayleigh-Ritz approaches, Goldberg, Bogdanoff and
Marcus (Ref. 9) solved the axisymmetric vibrations of truncated conical shells
by a numerical integration process. They converted the governing equations
into a system of six first-order differential equations which contain the un-
known frequency in their coefficients, and determined the natural frequencies
by trial and error. In a later paper, Goldberg, Bogdanoff and Alspaugh (Ref.
10) extended the technique to the case of nonsymmetric vibrations of conical
shells, in which the numerical integration of an eighth-order set of twelve
equations has to be carried out five times for each trial value of frequency, and
the calculations are repeated until all the boundary conditions can be satisfied
with desired accuracy. Recently Kalnins (Refs. 11, 12) developed a more gen-
eral numerical ihtegration procedure which enables one to calculate the natural
frequencies and mode shapes of an arbitrary or multisegmental shell of revol-
ution. Since considerable amount of computer time is required to calculate
each natural frequency and mode of a given shell by numerical integration pro-
cess, it appears unfeasible to apply these methods (Refs. 9-12) to probe the
frequency spectra of truncated conical shells with different conicity and com-
pleteness parameter.

In the present paper, a method consisting of an operator -matrix tech-
nique and a Galerkin procedure is presented for the investigation of free vibra-
tions of truncated conical shells with both edges free, clamped, or simply sup-
ported. The effects of transverse shear deformation and rotatory inertia are
included in the formulation, and approximate theories, not including trans-
verse shear and rotatory inertia or further neglecting the bending effects, are
derived therefrom. The essence of this method is that the determination of
natural frequencies and mode shapes is reduced to the calculation of the eigen-
values and eigenvectors of some coefficient matrix, which can be efficiently
performed on a digital computer and involves no trial and error. The size of
the matrix depends on the number of terms retained in the Fourier expansions
of the mode functions. With the help of a computer having adequate storage
capacity, it is not difficult to retain five to ten terms in these series.



For the purpose of illustrating the use of the method given in this
paper, numerical calculations are carried out, based on the approximate
theory for very thin conical shells for which the bending effects are negligible.
The variation of the natural frequencies of axisymmetric vibrations with
respect to the conicity and the completeness parameter is investigated by a
five-term truncation of the Fourier series of the mode functions.

The author wishes to acknowledge his appreciation to Dr. U. S.

Lindholm and Dr. W. H. Chu for valuable comments and helpful discussions,
and also Mr. R. Gonzales for his assistance in the numerical computations.

ANALYSIS

Matrix Form of Governing Differential Equations

Referred to the curvilinear coordinate system s and 6 on the middle
surface of the conical shell (Fig. 1), the five equations of motion of the shell
element (Fig. 2) which include the effects of transverse shear and rotatory
inertia are

2+ =y = ph — 1
os s ssina 00 s P 8t2 (1a)
ONso 2Nsp 1 BNe 9 . 8% 1
ds s s sin a 96 stan a P 52 (1b)
N 9Q Q 9Q 2
- 6 S +__i.|.__1_._ 70 pha_‘_’v_ (lc)
s tan a 0s s s sin a 086 8t2
2
BMg Mg 1 OMgy My 1 2% ta)
os s s sin a 080 s s 12p 8t2
2
9s s s sin a 96 6 T 12 52 €

The stress-strain relations of thin elastic shells which incorporate
transverse shear deformation have been derived by a number of authors using
various approaches. The following form of the stress-strain relations, which
will be used in this paper, is based on those given by Naghdi (Ref. 13)
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(sometimes referred to as Reissner-Naghdi's theory). By introducing an
approximation similar to one used by Naghdi and Cooper (Ref. 14) in their
study of cylindrical shells (System II, Ref. 14), these relations for conical

shells are

N, = | Bev(cas St )] 22
Nyg = Nps = 5 C I:g_\s,-l-—s_;ln_z %ﬂ (2b)
Ny = c[——.i——a—v—+3+————w——+v-a—u] (2¢)
s sina 06 s s tan a Os
v, = o[ 5t (s et )
Mg = My, = 15| gk e B 2
Mo - D\ ae bt Vel @)
Q. = Klé"c:g—}+ss] (2g)

where C = Eh/(1l - vz), D= Eh3/12(1 - vz), and k 1is a shear coefficient
which has the value 5/6 in Reference 13 as a consequence of the consistent
assumptions for stresses and displacements. Slightly different values of g
have been obtained by other authors through different considerations®, but the

*For example, in their studies of cylindrical shells, Herrmann and Mirsky
(Ref. 15) have used k = 0.86 and later (Ref. 16) Tr2/12, Lin and Morgan

(Ref. 17) have used 8/9.
6



effects of this difference are believed to be very small for all practical pur-
poses. It should be noted that, when the effects of rotatory inertia and trans-
verse shear deformation are neglected, the system of governing equations,
(1) and (2), reduces to that of the classical bending theory (Ref. 18). If the
term QG/(S tan a) in (lb) is further neglected, it reduces to the Donnell
type theory as given by Seide (Ref. 19).

To satisfy the periodical property in the circumferential direction,
the thirteen variables in (1) and (2) are assumed to be separable in the
form:

r s N
1w T aun
W aw,
Bs Bsn
Ns L CNSn
< Np = 9 CNp, p sin(nf +6,)cos wt, (3a)
Mg (D/a)Mgn
M, (D/a) Mgy,
L Qs _ (D/a2)Q., |
(v ) ( avy w
Bg Bon
Ngg » = CNsQn cos (no + 90) cos wt {3b)
Mg (D/a)Mggn
Q | (D/a%) Qgn

where w is a natural frequency, n an integer representing the circum-
ferential wave number, and 6, a phase angle which is introduced for the con-
venience of discussion for n = 0. Note that as a result of using the reference
length a = s sin a (the radius of the major base), the mode functions with
subscript n are dimensionless quantities.

Substitution of (3) into (1) and (2) results in

2
sn sn n w (1l - v%)a
+ - - - _wpltr - v)a
ds s s sin a s E Yn (4a)
dNggn N 2Nggn N nNgp N h? Qon ~ wzp(l - vz)a b
ds S s sin a 12,2 s tan a - E vn (4b)



Non hé (do‘sn QUn 2y ) o coz_g(l - vz)aW

+ +
stan a 1232 ds s s sin a

dM N Men ?Mgon Mon  Qn _ wzp(l - vz)a
ds s ssina s  a E sn
dMSGl’l N ZMSGII l’lMGn Qel’l _ O.)Zp(l _ VZ) a
ds s ssina a E Bon
dun nvy u, Wy,
Nsn: 2 4s +va('-ssinaJr-s-I—stana)
1 - v dvy nu, Vi
Nan - 2 a ( ds + s sin a :)
navy aup awp dupy
Non = -ssina+ S -'-stana+va ds
M _ dBgn . ( nfgpn . Bsn)
sn = @ ds va - s sin a S
M 1l - (dBQn nBgn B9n>
sfn ~ a ds s sin a s
anﬁen aﬁsn dﬁsn
MGn - 7 s sin a+ s tova ds
k(1 - ) 12a2(adwn )
Qsn = 2 72 \"ds " Psn
o _ k(1 - v) 12a2< anwy v )
On 2 he s sin a on

The thirteen differential equations (4) and (5) contain thirteen
unknowns but involve only ten of their first derivatives, since the first

(4c)

(4d)

(4e)

(5a)

(5b)

(5¢)

(5d)

(51)

(5g)

(5h)



derivatives of the three variables Nsn’ Msn’ and an do not appear.
Therefore, the system is of tenth order, and requires five appropriate bound-
ary conditions at each edge to ensure the problem completely determinate.

Introducing the well-known coordinate transformation for conical
shells,

s = sye (6)

L = log <§%) = log (%) (7)

we can write the equations of motion, (4), in the matrix form:

r ~
NSn
Nson [ Upn )
Ngn Vn
M W
sn 2 n
F < - = 0 J S (8)
Man Bsn
M
fn | Pon |
Qg¢n
L Qon

where £ is the dimensionless natural frequency parameter (hereafter
simply referred to as frequency when no confusion will arise).

Q = wavp(l - v2)/E (9)

and F is the (5 X 8) operator matrix:



L1 — 1 0 0 0 0 0
sin a
-n
0 -2 : 0 0 0 0 -€ cot a
sin a
€n
F =e* sin a 0 0 cot a 0 0 0 e-1) —
sin a
-X
0 0 0 O-1 . 1 = 0
sin a sin a
-X
0 0 0 0o -2 — =
5 sin a sin a |
(10)
in which &£ = d/dx is the differential operator and € = h2'/12a2 the thick-

ness parameter. Similarly, the stress-strain relations (5) are transformed
to the matrix form:

r N, ~
Nsgn ([ un )
Non Vn
Mgn Wn

< > = K < > (11)
Meon Psn
M9n L 5911 )
Un

\ Qen w

10



where K 1is the (8 X 5) operator matrix:

vn -‘
-+ v sin a y cot a 0 0
Loy o lovioyg 0 0 0
2 sin a 2
el - —— 0 0
- v sin a cot a
n
0 0 0 Ny, T
sin q
K = exsina
0 0 o vz _l-ovie
2 sin a 2
n
0 0 0 v+l - p—
ks ks e ¥
0 0 -0 = — 0
€ € sin a
kg n kg X
0 0 — 0 — —
€ sin a € sin a
(12)
in which kg = k{l - v)/2.
Let N denote the stress column vector:
N = {NanSGnNGnMsnMsenMQannQGn}’

and U denote the displacement column vector

u = {unvnwn Bsn BGn}

then, from the matrix equations (8) and (l1l), we can eliminate either
N or U to get




or
JN = @™N (14)
where H is the (5X 5) operator matrix
H = FK
and J is the (8 X 8) operator matrix
J = KF

To simplify the multiplication of two operator matrices, we observe
the following rules from operator calculus:

(1) Let P (L) be any polynomial of the differential operator
A = d/dx, then the operator -eX obeys the shifting rule

P(L)e® = *P(L+ 1)
and, in general, for any constant c,
PLI)e* = e¥P (LI + )
This rule also applies to operator matrices whose elements
contain polynomials of /. Thus, for example, if [Q ()]
and [Q'(KJ)] are two such operator matrices, we have
[QUON) - e¥[Q' )] = & - [Q(F+ 1] - [Q' ()]

(2) Let ¢ and c¢' be arbitrary constants, then

(T +c)(L+ ') = ﬁ2+(c+c’)ﬂ+cc'

With the help of these rules, we can easily calculate the two operator
matrices H and J:

H = [H], i,j = 1,2,...,5
and
J o= [J4, i,j = 1,2,3,...,8

The operators Hij and Jij are given in Appendix I.

12



The remaining procedures of solution of the vibration problem depend
on the boundary conditions prescribed at the two circular edges, i.e., at
x = 0, L. It will be seen that (14) is the more convenient form for free-free
conical shells, while (13) is better suited for conical shells with both edges
clamped or simply supported. In the following a few important edge condi-
tions are considered separately.

Calculations of Frequencies and Modes

Clamped edges. - When the truncated conical shell is clamped at both
edges, the boundary conditions are, at x = 0, L,

Bon = 0

Therefore, the five mode functions can be expanded into sine series, every
term of which satisfies the boundary conditions independently. After trunca-
tion, they are

M,
mx
u, = z an, sin L (15a)
m=1
M,
. mmx
Vn = b sin i (15b)
m=1
M3
. mmx
W, = Zl Cpy 8in — (15¢)
My
- z 4 sin 2™ 15d
Bsn ~ m ST ( )
m=1
Mg
mwx
Bon = 2. °m S0 (15¢)
m=1
where Mj, ..., Mg are properly chosen integers representing the number of

terms to be retained in the series, and which may be taken equal to each other.
Denoting M = Mj] + My + M3 + My + Mg, there are M undetermined constants
in the problem besides the unknown frequency.

13



We assume that the Fourier expansions of the five mode functions are
termwise differentiable twice.* Substitition of (15) into (13) results in five
equations containing the M coefficients. The first equation, for example,

can be written as:

My M, M,
mmx mmx mmx
z am(Hllmn T >+ Z bm(H1251n L )+ cm(H13sin I )
m=1 m=1 m=1
M M M
4 14 mmx > 15 mmx ! kmx
+Z dp, \H " sin T + z em | H mnT) = Q z aksinT
m = 1 m=1 k =
(16)
where the operators HlJ, j=1,2,...,5, are, as given in Appendix I,
1 -
H11 = er Sinza(-ﬂ2+l)+ > Vnezx
12 2 1+ 3 -
H =—eanina( ZV—U-F ZV)
i3 - 2% sin a cos a (v + 1)
ul4 = gl - o,
kwx
To apply the Galerkin method, we multiply (16) by sin 1,
k=1,2,..., My, then integrate over the interval 0< x< L. This gives
M; equations:
M M, M
11 1 1
> a H o+ b HY2 + > o Hoo = @fa,  k=1l,2..., M,
m=1 m = m=1

*Let f(x) be a smooth, single-valued function of x in the interval
0 x< L, then its Fourier sine expansion is usually termwise differentiable

twice if £(0) = £(L) = 0, and its Fourier cosine expansion is usually termwise
differentiable twice if f'(0) = f'(L) = 0.

14




where

1: 2 L kmx 1; mmx

i - & f . kmx ioas . .

Hk I : sin =3 (H sin =3 )dx, j=1,2,3.

Note H14 and H15 are dropped because they are identically zero B
km km PP ¥ ¥ : y

applying the same procedure to all five equations in (13), we get M alge-
braic equations for the M coefficients, which can be put in the matrix form

M, M, M4 My Mg
Y — —~A —~A —
(2 ) (2
11 a a,

() 2] 2 (2 (20| | %
[m2l) (m22) [m23 7 (et (Eld) bl b1
ENE RN C RN L R SN
() DEEY T2 ) ) 20 | dy 9
s (2] () () (2| (6 Lé1

p—

A}

N

2 2 E § ¥
P S e N

(S}

It is important to note that, for conical shells, the coefficients H%(Jm can be
integrated in closed form. Equation (17) is a standard form of matrix eigen-
value problem. The eigenvalues and corresponding eigenvectors of the

(M X M) matrix [Hll(Jm] s which can be readily calculated on a digital computer,
give the frequencies and corresponding mode shapes.

Simply supported edges with axial constraint. - The term simple sup-
port is originated from the theory of beams and plates. When it is applied to
shells, ambiguity may easily arise in concern with axial constraint. If the
supports are provided by attaching light but very rigid rings to the edges, then
no appreciable axial constraint exists for the cases n=0 and n=1 (neg-
lecting the inertia of the rings), while considerable axial constraint will exist
for n> 2. For the case with complete axial constraint, the boundary condi-
tions are, at x = 0, L,

u, = vp = wy, = M = PBgn = O. (18)
From (l11) and (12), the condition Msn = 0 can be replaced by

dBgn
dx

- vBgn = 0, at x=0,L

15



Therefore, to satisfy all the boundary conditions term by term, Uy Vs Wps
and Bgpn are expanded into sine series as before, while B, must be expanded
into cosine series which, after truncation, is

d My

= vX __O._|_ d mnx (1)

Bsn e > m €08 T, 9
m=1

By applying the same Galerkin procedure as in the clamped-clamped case, we
can obtain an (M + 1) by (M + 1) coefficient matrix, whose eigenvalues and
eigenvectors give the frequencies and mode functions of the simply supported
conical shell. The calculation can be simplified by using a new variable

Bgp = €VXBg,s and transforming (17) accordingly. If the Poisson's effect on

sn
boundary conditions is neglected, the factor eV* in (19) may be dropped.

Simply supported edges without meridional constraint. - If the re-
straint on meridional displacements at the two circular edges is completely
released, the boundary conditions u, = 0 in (18) should be replaced by

Ngp = 0, at x = 0, L. From (l1) and (12), these conditions can be written

dul,1

I T vu = 0, atx=0,L

n

Therefore, in addition to taking (19) for Pg,, un should be taken as

By applying the same Galerkin procedure, we can obtain an (M + 2) by

(M + 2) coefficient matrix. The calculation can be simplified by using a new
variable U, = e”V¥u,, and transforming (17) accordingly. If the
Poisson's effect on boundary conditions is neglected, the factor eVX above

may also be dropped.

Simply supported edges without circumferential shearing constraint. -
If the restraint on circumferential dispiacements at the two circular edges is
released, the boundary conditions v, = 0 in (18) should be replaced by
Nggn = 0, at x=0,L. From (11} and (12), these conditions can be written

dvrl

-a+vn=0, atx =0, L

16



The following expansion will satisfy these conditions:

M
b0 2

The calculation can be simplified by using a new variable V, = exvn, and
transforming (17) accordingly.

Free edges. - For a truncated conical shell with both edges free, the
boundary conditions are, at x = 0, L,

Nsn = Nan - an - Msn - I\/Isen =0
It is natural that these mode functions should be expanded into sine series and
(14) should be employed to solve the problem. Since, as mentioned before,
the system of governing differential equations is of tenth order, no boundary
conditions need be imposed on the other three variables, namely, Ng,, Mgy,
and Qg,- These three functions assume the role of parameters in the prob-
lem and can be expanded either into sine series or cosine series. However,
an examination of the operators J' in Appendix I indicates that the first de-
rivatives of these functions are involved, hence their series expansions must
be termwise differentiable to ensure convergence of the Galerkin procedure.
Since, in general, Ng,, My, Qgp and their derivatives do not vanish at the
boundary, their cosine expansions represent even periodical functions, which
are continuous for all values of x (with piecewise continuous first deriva-
tives), while their sine expansions represent odd periodical functions with
discontinuities at x = 0, L, 2L, etc. Therefore, the cosine expansion is pre-
ferable to the sine expansion, for the former satisfies a set of sufficient con-
ditions (Ref. 20) which ensures termwise differentiability, while the latter
does not. Besides, for functions having nonzero value at x = 0, L, the cosine
series expansions converge more rapidly than the sine expansions.

Now substituting the five sine series and the three cosine series into
(14) and applying the Galerkin procedure, we can readily obtain the coeffi-
cient matrix for free-free conical shells, similar to (17), However, the size
of the resulting matrix is considerably larger than in the four previous
cases.

Transverse Shear Theory for Short Shells

A physical reason for the derivation of the following theory can be
drawn from the fact concluded by many prior works (e.g., Refs. 8, 14)

17



that while the effects of rotatory inertia are in general negligibly small, the
effects of transverse shear deformation may not be neglected for relatively
short shells. It will be postulated that in the vibrations of short conical
shells, only the transverse shear deformation in the s -z plane is needed
for significant correction provided that the circumferential wave number n

is not very large.

It is a well known fact that, when the effects of transverse shear and
rotatory inertia in the foregoing theory are neglected, the order of the system
of governing differential equations (4) and (5) reduces from ten to eight. In
this section, it will be shown that the neglect of transverse shear deformation
in the circumferential direction alone will result in this reduction of order.

In the following derivation, the circumferential rotatory inertia term

Bzﬁen/atz is also neglected for simplicity. However, it is easy to see that

the retention of this term does not affect the order of the differential equations.
The above discussion can be easily generalized to arbitrary shells of revolution.

If the rotatory inertia term in (le) is neglected and the transverse
shear deformation in (2h) is set to zero, (4e) and (5h) should be replaced,

respectively, by

dM 2M nM
_ sOn sOn 6n ) .
Qgn = a( ds * S t s sin a (4e')
anw
B - = 0 (5h')
On s sin a

Substitution of (4e') into (4b, c¢) and (5h') into (5d, e, f) gives

dNggn  2aNggy anNgp ea’ dMggn |, 2Mgpn nMgn _ 2
a + + + + + - - —Q Vl’l
ds s s sin a s tan a ds ds s sin a
(4b')
aNgy dQgp an) ca’n dMgon  2Mggn = nMpy > 2
~-———— +te€a + - - + t— = -QTw
s tan a ds s s sin a ds s s sin a n
(4c')
adﬁsn N < aznzw aBSl‘l) ( d')
M = v 5
sn ds s2 gin? q 5

18



2
1 -y < 22n dw, 2Z2anw, . anfgp, )

= 1
Mson s sin a ds * s2 gin ¢ S sin a (5e")
2.2
M - o, SPen 2Pen (5¢')
fn - 2 . 2 V& Tds s

s~ sin” a

It is seen that the derivative dfgp/ds is eliminated from the system, and
that the three derivatives dNggn/ds, dMgg,/ds and dQgu/ds can be
combined into two by introducing two new variables, Hg = CHgp cos(nf+6,) e
cos wt and Vg = (D/az) Vgn sin(nd + 8,) cos wt, defined by*

M

s6
He = Neo * Sian o (29)
oM
1 s
Vs = QS-'_ssinq 06 (21)
or, after using the assumption (3),
M
sOn
Hgp = Ns@n + €2 ian a (20a)
anM
sOn
Ven = Sgn R — (21a)

Therefore, the system (4a, b', c¢', d) and (5a, b, ¢, d', e', {f', g) is de-
generated from tenth to eighth order, and requires only four boundary condi-
tions at each edge. Following the same steps as in deriving (13), a matrix
equation of the displacement vector U* = { u, v Wy Bgn can be obtained:

H*U* = 02U+ (22)

*These two variables have been used in Ref. 10 and, in a more general
form, in Refs. 11, 12. In the case of a plate (either o —= 90°, circular, or
a—= 0, s sin a = a— o, rectangular), Eq. (20) becomes trivial while (21)
has been discussed by Kirchhoff, see Ref. 21.
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where H* is a (4 X 4) operator matrix. The elements of H* are given in

Appendix II.

Equation (22) can be used in place of (13) for conical shells with both
edges clamped or simply supported. The remaining steps are the same as
described before except that the boundary conditions on fg, or Mgy, are
now discarded. A similar matrix equation of the stress column vector
N#* = d Ngp Hgpn Ngn Mgn Mggn Mgn Vsn} can also be obtained, but will not be

considered here.

Bending Theory

As mentioned before, the system of differential equations (1) and (2)
reduces to that of the classical bending theory of thin shells if the effects of
transverse shear and rotatory inertia are neglected. This can be achieved by
neglecting the right-hand-side terms of (ld, e) and setting to zero the quan-
tities in (2g, h) that represent the transverse shear deformation. Thus, in
addition to replacing (4e) by (4e'), (5h) by (5h'), (4d) and (5g) should also
be replaced respectively by

dM M nM M
sn sn sfn Gn)
= + - - 44"
an a( ds s s sin q s (4d’)
dw
Bsn = - 23— (5g')
sn ds g

After elimination of Q's and B's by using (4d', e') and (5g', h'), and intro-
duction of the coordinate transformation (6), and the three equations of motion
(la, b, c) can be written in matrix form:

Ngn Mgn 5 Upn
F Nggn ¢ tF 4 Mggn = @ Vn (23)
Ngn Mgn wn

where F and ¥ are (3 X 3) operator matrices,

sin a (L - 1) n sin a
F = &F 0 sin a (A£-2) -n (24)
0 0 cos a

20



0 0 0
F = 6e2x 0 sin a cos a (L-2) - n cos a (25)
sinza(—ﬁ2+ﬁ) -2n sin a(ﬂ-l) —sin2 aﬁ+n2
and the stress-strain relations (2a - f) become
r - N
Nen Un
ﬁ Nggn = K4 v, o (26)
kNen - Wn -
r s N
Mgn Un
Mggn = K9 v, (27)
Men L Wn J
where
—sin a(-T+ v) - vn Vv CcOs a
— X 1 - 1 -v
K =e s—n - sin a (L +1) 0 (28)
| sin a(-vI+1) -n cos a |
0 0 sinza{—ﬂz—(l—v)ﬁ}+vn2 ]
~ 1 -
K=e2%| 0 o > “n sin a (L+1) (29)
| O 0 sinza {— vﬂ2+(1 —V)J}+n2_

It might be noted from (29) that the couple resultants M's depend on trans-
verse displacement w, only, as a consequence of the simplification made in
the stress-strain relations.

Substitution of (26) and (27) into (23) gives a matrix equation for
displacements:
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n
H Vn +H Vn = Qz Vn (30)
Wn W Wh

where H =FK and H=TFK are (3X 3) operator matrices governing the
membrane and bending effects, respectively

- i _
sin2 a(—ﬂ2+ 1)+ Zvn -nsina(lgvj+32v)sinacos a(vF+1)

— 1+ 3 - 1 -
H = 2% nsina( Zvﬂ— Zv) szinza(—.ﬂ2+1)+n2 -nsin a cos a
-sin a cos a (v -1) -n cos a cosza
(31)
B T
0 0 0
H = €e4X 0 0 ncosot(sin2 aﬂz-nz) (32)

0 0 [sin® a(0+2)% - n% (sin® a 5% -n?)

It is seen from (32) that the fourth derivative of w, is involved in the bend-
ing effects. Therefore, the Fourier expansion of w = must be termwise dif-

ferentiable four times to ensure convergence of the Galerkin procedure. This
requirement limits the direct application of Galerkin method to equation (30).
For this reason, a calculation procedure based on equation (22) is recom-

mended.

Membrane Solutions

It can be seen from (25) and (29) that the bending effects are pro-
portional to (hz/az). Therefore, for thin shells we can neglect the second
term of (23) or (30) to find an approximate solution. Thus, from (23), we
have

Nsn un
Fq Nggp ¢ =02 < vg (33)
Non Wn
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which, combined with (26), gives

uy, Upn
H<{ v = ¢
n =2 Yn
(34)
Wn Wn
and
Negn Nen
T < Nggn ¢ = 9% < Nggp (35)
Non NGn
where H is given in (31), and J = KF is the (3 X 3) operator matrix:
2 n wn? +1)
ST v+ (1 - y) - — [(L+v)T+(1-3v)] -(LP+1)+——
sin a sin2 a
= 2 1- 1- 2 nZ l-v n
J = e“®sin®q ¥ -1y - of-a- —— (D+3)
2 sin q 2 sinz a 2 sin a
2 n n%+1
vl T-(1-v) - —=—[(1+v) T-(3-v)] -uI+1)+
sin a .
. sin” a|
(36)
Equation (34) can be used for clamped or simply supported edge conditions as

discussed above, while (35)

can be used to find solutions for extensional vi-

brations of free-free conical shells, which will be given here for illustra-

tion.

The boundary conditions for free edges are N, =
x = 0, L, which are satisfied by taking

M,

. mTx

Nsn: Z a5, sin L
m=1

N =

M,

. mmx

sOn z bm sin —
m=1

(37a)

(37b)
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€0 ke mux
N9n = > + z lcm cos L (37¢)
m-=

It might be remarked here that the constant term in the cosine series must be
included to make the set of coordinate functions complete. In fact, the con-~
stant cp will be the dominating term in a specific mode to be designated as
ring mode. Substitution of (37) into (36) and application of the Galerkin
procedure give (M) + My + M3 + 1) algebraic equations for the coefficients,
a's, b's and c's. Thus,

- - ~
- 1 _— —
Fimd ) T | | 2 ay
[F2L7 (32271 [3231] { by p =% < b, b (38)
(Tomd 325 220 | | <o <o
L o : R
where [fllgm] , 1,3 =1,2,3, are partition matrices whose elements are given

by the following formulas

2
=11
kazsinza[(%z) Pkm+v(-niE)ka+(l—v)Pkm] m=1~M11

-12 _ . mmw

Jym=-nsina (l—v)(—L—>ka+(l—3v)Pkm m=1~M, o k=l~M1
313 _{mm in2 o P n 2 s 2 =0 3
km = T sin® a Py, (vn®+ v-sin a)ka m = ~M3J (39a)
=21 1-w . mi h

Jem="72 nsinall 77 Q%m - Pkm m=1~M;

22 1-v[fmm 2

- N - mw . 2 _ _

Jkm = 2 [(L) +4 sin a+nilpkm rn—l~M2 rk—1~M2
=23 1-vy . mir

km™ - 72 “1““[(—L)Pkm'3ka] m=0-M; | (39b)
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=

=31
km

=32
ka

=33
ka

m

m

km

.2 _rr_lﬂ)z mn ) 1
sin a |v L ka+< I ka—( —v)Qmk m=1~ M,

>’ k:O~M3

(39¢)

mmw
:-nsina[(l-l— v)(T)ka—(3—v)ka:| m=1~M,
mm
=vsinza(T)ka+(n2+l—vsin2 a)Ryim m=0~ Mg
o
2 L k
=1—f e2X gin TI:X sin mI_T‘rx dx
0
= |: 2L - - 2L [eZLcos(k+m) T - 1]
412 +(k -m)2 w2 4L2 + (k +m)2 7%
2 L 2% . kmx mmx
=1 e 51n—L—COSde
0
=—|: (k -m)w + - (k +m) m ][eZLcos(k+m)w—l]
412 + (k -m)2 w2 4L2 +(k +m)& w2
m > 1
2 L k
:E‘/‘ eZX cos —E—(— cosrnLTTX dx
0
=|: 5 2L 5 2+ 5 2L > [eZL.cos(k+m)1r—l]
4L+ (k -m)° 4L+ (k+m)“ w
m> 1
L
1 kmwx kw
:_ﬂf ezxsianx:—‘*Z—ZE[echos(kw)—I]
0 4.7 + k"
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2
2% cos kmx dx = _2__142_2_[6211
4. + k“w

NUMERICAL RESULTS AND DISCUSSION

It is seen that the coefficients :T_Em depend on four parameters,
namely, the Poisson's ratio v, the semivertex angle a, the completeness
parameter s,/s;, and the circumferential wave number n. Poisson's ratio
is taken as 0.3. For a set of assigned values of the other three parameters
and properly chosen integers Mj;, M5, M3y, the formulas (39) give numer-
ical values for the coefficient matrix of (38). As an example, we set a=30°,
sp/s1 =2.0, n=1, M) =My =3, and M3 = 5, then the formulas (39) gen-
erate a (12 X 12) matrix. The eigenvalues and associated eigenvectors were
calculated by a Jacobi-like method* of diagonalizing matrices developed by
Eberlein (Ref. 22). The resulting frequencies and eigenvectors are given in
Table 1, listed in the same order as they appear in the output diagonal matrix.
It is seen that the eigenvalues appear in an interesting arrangement and may be
classified into three groups. The first three modes may be termed as 'longi-
tudinal modes' in which ay, ap, and as predominate in turn, thus the vibra-
tions are mainly associated with the meridional stress Ng. The fourth, fifth
and sixth modes may be called '"'shear modes' (or rather '"torsional modes"
for n = 0, the axisymmetric case). The remaining modes in which N, pre-
dominates are mainly associated with the transverse motion and may be
termed as "transverse modes.' From Table 1, it is as expected that the
cosine series (37c) converges slower than the two sine series (37a, b) and
requires six terms to make the first two transverse modes (Nos. 7 and 8)
have satisfactory accuracy. It should be remarked here that the special
arrangement and automatic classification of the three types of modes appear
only for a certain range of the parameters a, s2/s), and n, in which the
coupling effects are weak. It should also be mentioned that, although twelve
modes were obtained from the solution, only the first longitudinal mode, No. 1,
the first shear mode, No. 4, and the first two transverse modes, Nos. 7,

8, have good accuracy. The last two eigenvalues were not shown in Table 1
because they appear as (2 X 2) diagonal block in the output diagonal matrix,
which means (Ref. 22) the eleventh and twelfth eigenvalues are conjugate

*The subrouting program used in the calculations is based on one prepared
by Eberlein, Computing Center, University of Rochester, N. Y. For details
of the method, see Ref. 22.
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TABLE 1.

NATURAL FREQUENCIES AND FOURIER COEFFICIENTS OF MODE
FUNCTIONS, Ny, Nggn, Ng,, OF FREE-FREE CONICAL SHELLS

WITH a = 30°, sp/sy =2.0, n=1

No. 2 aj ay aj b b, bs < c] cy c3 Cy Cg

1 3,084 .904 .050 -.015| .023 -.195 -,029  .370 .116 .078 -.016 -.003 -.017
2 6.903 .267 721 .146| .021 -.223 .464| -.017 .063 .281 -.337 .040 -.032
3 10.279 077 -.396 .903| .013 -.024 -.027| .147 ~-.122 .172 .075 =-.162 .056
4 2.774 .175 .080 .015| .371 .117 -.012| .898 ~.547 -,033 -.050 .002 -.044
5 4,308 .499  .046 .091 .290 .663 .217; .096 ,458 -.478 -.097 -.071 .054
6 5.937 .289 -.923 -,177| .101 ~.215 .507| .185 -.318 -.007 -.136 .111 .009
7 1.585 .137 -.026 -.013}-.228 -,032 .013|1.271 .278 -.080 .130 .020 .025
8 0.850 .141 -.054 -.035| .244 .129 .078| -.238 .445 .,591 .597 .102 .068
9 1.221 .036 -.127 .045| -.254 .258 -,061| .283 -.684 1.048 -.294 .000 .036
10 1,111 .079 -.064 -.042{ -.254 .085 .098| .195 -.553 ,207 .694 .118 .070




complex numbers as a result of the series truncation. It is found from com-
putation experience that, if unequal integers are assigned to Ml’ MZ’ and
M3, there will be a danger of obtaining complex eigenvalues.

Since the bending rigidity has negligibly small effects on lower modes
of axisymmetric vibrations of free-free conical shells, we will investigate
this case in detail by applying equation (38). From (36) it is seen that,
when n = 0, we have

512 _ -J—Zl : 3-23 _ 532 -0
Therefore, the second equation of (35) is uncoupled from the other two; that
is, the torsional modes are completely independent from the coupled longi-
tudinal and transverse modes. From (39) we can see that the torsional
modes are given by the submatrix [‘?ﬁrzn] . Since we are now interested in the
nontorsional axisymmetric vibrations of free-free conical shells, we set
v=0.3, n=0, M} = M3 = 5, and Mj = 0 in formulas (39). The frequency

now depends on a and sz/sl only.

To investigate the dependence of frequency on a, we fix s3/s; = 2.0,
and take a series of values for a, (a = 3°, 5°, 10°, 15°, 20°, 30°, 45°, 60°,
75°, and 85°), then calculate the frequencies from the (11 X 11) matrices.
The results are plotted in Figure 3. It was found that, for a >15°, the fre-
quencies appear as two groups in the output diagonal matrices, and the fre-
quencies of longitudinal modes are always higher than those of transverse
modes. But for a < 15°, the frequencies of the two groups become inter-
spersed, and no pronounced transverse modes exist. This phenomenon will
be referred to as ''strong coupling.' For different values of the completeness
parameter sp/sj], different curves similar to Figure 3 will be obtained.
Figure 4 represents the case of sz/s1 = 4.0, in which strong coupling occurs
in the region 0 < a < 45°.

It might be noted from Figures 3 and 4 that, while the frequency
spectra of longitudinal modes extend to infinity, the frequencies of higher
transverse modes are spaced in a finite interval, the shaded region. This
result is, as expected, the limiting case when the shell thickness tends to
zero. For real shells with even small thickness, the frequencies of higher
transverse modes in the shaded area and of all transverse modes in some
neighborhood of a = 90° are expected to be increased considerably by the

bending rigidity.

Another interesting result from the above calculations is that the fre-
quency associated with the constant term cp of the cosine series (37c) tends
to a finite value as a— 90°. This particular type of vibration may be called
a "ring mode" since the entire shell vibrates without a nodal circle. The
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different types of modes are labeled in Figures 3 and 4 by L for longi-
tudinal, T for transverse, and R for ring modes.

The dependence of the frequency on the completeness parameter
s»/s] was investigated in a similar manner. Setting a = 15° and taken
successively sp/sy = 1.1, 1.25, 1.75, 2.0, 2.25, 2.5, 3.0, 4.0, and 5.0,
we calculate frequencies from the (11 X 11) matrices. The results are
plotted in Figure 5. It is found that the two types of modes have weak coupling
for sp/s] < 2 and strong coupling for sp/s; >2. It is seen that the fre-
quencies have a very interesting and pronounced steplike variation with sj/sjy,
typical of this type of problem. Another interesting conclusion which may be
drawn from Figure 5 is that, for a = 15°, the lowest frequency is nearly
independent of the completeness of the conical shell.

From the above numerical analysis, Figure 6 was contrived and sum-
marizes graphically the influence of the meridional stress resultant Ng on
the transverse modes of axisymmetric vibrations of free-free conical shells.
While strong coupling will always exist for conical shells in the upper-left
region in Figure 6, the lower-right region includes shells with weak coupling
effects which ensure the existence of pronounced transverse modes. The
coupling effects can be more easily seen from the mode functions. Some
typical truncated series representations of the mode functions are shown in
Figures 7 through 10. Figures 7 and 8 show the mode functions of shells
in the weak coupling region. It is seen that, in transverse modes, Ng, is
small compared to Ng,. Figures 9 and 10 show the mode functions of two
shells belonging to the strong coupling region. The modes can no longer be
classified, and Ng, and NGn are of the same order of magnitude.

CONCLUSIONS

The matrix method presented in this paper provides a systematic way
of calculating natural frequencies and mode functions of truncated conical
shells with the same type of boundary condition at both edges. It is not appli-
cable to mixed boundary value problems, such as fixed-free conical shells,
because of the same difficulty as will be encountered in applying the Rayleigh-
Ritz method, namely, the difficulty of choosing coordinate functions to satisfy
all boundary conditions. However, whenever applicable, it provides an effi-
cient calculation procedure which preserves the mathematical characteristics
of the vibration problem as an eigenvalue problem.

Finally, it may be remarked that the numerical results obtained in the
present work confirm the conclusion observed previously by many others,
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that a one- or two-term Rayleigh-Ritz approximation cannot yield satisfactory
results except for slightly tapered, short conical shells, The calculations
also indicate that, in most cases, more than five terms are needed to give a
satisfactory series representation of the mode functions.
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APPENDIX I

The elements of the operator matrix H

il

l2

H

I

"

1 -
e‘ZX [-sinza (ﬂz - 1) + > 4 nz]

1+ .
—nsinaezx[ vﬁ+32v:|

2

sin a cos a e2X (vﬂ+ 1)

H15 =0

-(1 +kg) ncosa e2

x
-kscosae

- sin a cos a e2X (v.ﬁ— 1)

- nCcos ae

2x

e2x [ -kg sin o F? 4 ksn2 + cos? a]l

k

S

sinaex(ﬂ- 1)
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40

35

4l

The

_ X
= ksne
=H%* = 0

= - (kg /€) sina e

1 -v

= e2X [— sin2 a (ﬂz - 1) + n sin a:l + (kg f€)

1+V 3_—V
:—nsinaezx[ :I

+
> yoj
-H92 - ¢

= (ks/e) n eX

1 +v 3-v
_ . 2x -
n sina e I: > yag > -J

1 - 2 2 2
=- — vsinza er (,8' - 1) +n e X+(ks/€)

elements of the operator matrix J
N eZX sinzo. [32 -vZd - (1 - v)]
:J45 = ~-n sinaezx[( 1 + v)IT+(1 - 3v)]

= e2¥ [ _sina (F+ 1) + v (1 +1n°)]

=15 - 716 _ g



J17 = ve sina cos a eZX (T-1)

J18=2v€ncosaezx

1 ~v
le = gb4 - nsinaeZX (L -1)

1 -v 2
JZZ:J55=-———e2X[sin2a(ﬂ - 4) —nz]

1l -v
J23=J56=—-—nsinae2x(o6'+3)

2
J-2.4 _ J25 _ J26 - J27 -0
28 1-vV 2x
J = € sin a cos a e (L + 2)
2

J31 =J64=—sinzaez‘x[v.gl2 - T+ (1 - v)]
J32=J65:—nsinaezx[( 1+v)j—(3—v)]
J33=e2x[—vsin2a(,0/+ 1) +1 +n?]

534 - 335 = 336 _ g

737 - € sin a cos anX(.ﬁ’_ 1)

= 2€ n cosa e

41

J =J
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42

eZX [ —sinza (LT+1) +v (sin2 a + nz)]

-exsina(ﬂ— v)

- vneX
152 _ 353 _
l—vneX

2

1 - v . x
- > sin a e™ (L + 1)
J62 - J63 -0

- efx [v sinza (L +1) - sin2 a - nz]

- sina X (v.J - 1)

- (kg /€) sin a cos a eZX (LJ+ 1)
(kg /€) sin a e¥ (L - 1)
(kg /€) n e*

(kg /€) sin a e™



77

78

781

785

786

87

88

- kg sin® a e2% (ﬁz - 1) + (kg /e)

- kgn sin a eZX (.5’-(— 1)

=0

(kg /€) n cos a

(kg /€) sin a e® (L - 2)

- (kg /€) ne*®

kgn sina eZx (L - 1)

kgn

2

e®* + (k_/¢)
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APPENDIX II

The elements of the operator matrix H¥: *11, H*lz, H*13, H*14,
H*Zl, :::22, =:<31, H*32, >:=41, H*42, and H*44, are the same as
corresponding elements Hi in Appendix I.
23 1-v 2 2 2
H* =—ncosae2x+€ncosae4x[2 sin” a (& +2ﬂ)—n]
1+ v 3 -v
H+%?% - € n sina cos a e3X [ A7 - :’
2 2
H*33 = er [ -kg sin2 aﬁz + cos2 a]
1 -
- € 1’1264}([———3—-— Sil’lza (ﬁz + Zﬁ) - nz]
2 1 3 -
H=:<34:kssinaex(ﬁ—l)—€n Sinae3x[ +vﬁ— v}
2 2
1 +v
43 o o (kg /€) sina X +n° sin a 3% l: > L+ 2]

45
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